当X>-1时,求f(x)=(x^2-3x+1)/(x+1)的值域
问题描述:
当X>-1时,求f(x)=(x^2-3x+1)/(x+1)的值域
答
f(x)=(x^2-3x+1)/(x+1)
=[(x+1)^2-5(x+1)+5]/(x+1)
=(x+1)+5/(x+1) -5
因为 x>-1 所以 x+1>0
所以 (x+1)+5/(x+1)>=2√[(x+1)*5/(x+1)]=2√5
值域为 [2√5-5,正无穷)
答
f(x)=[(x+1)(x-4)+5]/(x+1)
=x-4+5/(x+1)
=(x+1)+5/(x+1)-5
x>-1
x+1>0
所以(x+1)+5/(x+1)>=2√[(x+1)*5/(x+1)]=2√5
所以(x+1)+5/(x+1)-5>=2√5-5
值域[2√5-5,+∞)