从边长为a的大正方形纸板中挖去一个边长为b的小正方形纸板后,将其裁成四个相同的等腰梯形(如图甲),然后拼成一个平行四边形(如图乙).那么通过计算两个图形阴影部分的面积,可以验证成立的公式为( )A. a2-b2=(a-b)2B. (a+b)2=a2+2ab+b2C. (a-b)2=a2-2ab+b2D. a2-b2=(a+b)(a-b)
问题描述:
从边长为a的大正方形纸板中挖去一个边长为b的小正方形纸板后,将其裁成四个相同的等腰梯形(如图甲),然后拼成一个平行四边形(如图乙).那么通过计算两个图形阴影部分的面积,可以验证成立的公式为( )
A. a2-b2=(a-b)2
B. (a+b)2=a2+2ab+b2
C. (a-b)2=a2-2ab+b2
D. a2-b2=(a+b)(a-b)
答
阴影部分的面积相等,即甲的面积=a2-b2,乙的面积=(a+b)(a-b).
即:a2-b2=(a+b)(a-b).
所以验证成立的公式为:a2-b2=(a+b)(a-b).
故选:D.
答案解析:分别根据正方形及平行四边形的面积公式求得甲、乙中阴影部分的面积,从而得到可以验证成立的公式.
考试点:等腰梯形的性质;平方差公式的几何背景;平行四边形的性质.
知识点:本题主要考查了平方差公式,运用不同方法表示阴影部分面积是解题的关键.本题主要利用面积公式求证明a2-b2=(a+b)(a-b).