∫sin²xcosx/1+sin³xdx
问题描述:
∫sin²xcosx/1+sin³xdx
答
简简单单∫sin²xcosx/(1+sin³x)dx=∫sin²x/(1+sin³x)dsinx设sinx=t=∫t²/(1+t³)dt=(1/3)∫1/(1+t³)dt³=(1/3)ln(1+t³)即(1/3)ln(1+sin³x)
∫sin²xcosx/1+sin³xdx
简简单单∫sin²xcosx/(1+sin³x)dx=∫sin²x/(1+sin³x)dsinx设sinx=t=∫t²/(1+t³)dt=(1/3)∫1/(1+t³)dt³=(1/3)ln(1+t³)即(1/3)ln(1+sin³x)