设函数f(x)=2cos²x+2√3sinxcosx (1)求f(x)的最小正周期及单调增区间 (

问题描述:

设函数f(x)=2cos²x+2√3sinxcosx (1)求f(x)的最小正周期及单调增区间 (
设函数f(x)=2cos²x+2√3sinxcosx
(1)求f(x)的最小正周期及单调增区间
(2)当x∈[-5π/12,π/12]时,求f(x)的值域
(3)若f(x)=5/3,-π/6

数学人气:319 ℃时间:2020-07-13 05:20:11
优质解答
(1)
f(x)=2cos²x+2√3sinxcosx
=1+cos2x+√3sin2x
=2(√3/2sin2x+1/2cos2x)+1
=2sin(2x+π/6)+1
f(x)最小正周期T=2π/2=π
由2kπ-π/2≤2x+π/6≤2kπ+π/2,k∈Z
得kπ-π/3≤x≤kπ+π/6,k∈Z
∴f(x)递增区间为[kπ-π/3,kπ+π/6],k∈Z
(2)
∵x∈[-5π/12,π/12]
∴2x∈[-5π/6,π/6]
2x+π/6∈[-2π/3,π/3]
∴-1≤sin(2x+π/6)≤√3/2
∴-2≤2sin(2x+π/6)≤√3
那么-1≤f(x)≤1+√3
即f(x)的值域为[-1,1+√3]
(3)
∵-π/6
我来回答
类似推荐

(1)
f(x)=2cos²x+2√3sinxcosx
=1+cos2x+√3sin2x
=2(√3/2sin2x+1/2cos2x)+1
=2sin(2x+π/6)+1
f(x)最小正周期T=2π/2=π
由2kπ-π/2≤2x+π/6≤2kπ+π/2,k∈Z
得kπ-π/3≤x≤kπ+π/6,k∈Z
∴f(x)递增区间为[kπ-π/3,kπ+π/6],k∈Z
(2)
∵x∈[-5π/12,π/12]
∴2x∈[-5π/6,π/6]
2x+π/6∈[-2π/3,π/3]
∴-1≤sin(2x+π/6)≤√3/2
∴-2≤2sin(2x+π/6)≤√3
那么-1≤f(x)≤1+√3
即f(x)的值域为[-1,1+√3]
(3)
∵-π/6