若0≤X≤π/2,求y=(cosx)^2+SinASin2x的最值.
问题描述:
若0≤X≤π/2,求y=(cosx)^2+SinASin2x的最值.
A=60°
答
y=(1+cos2x)/2+√3sin2x/2
=sin2xcos30+cos2xsin30+1/2
=sin(2x+30)+1/2
所以最大值为1+1/2=3/2
最小值为-1+1/2=-1/2