将方程x平方+(根号2+1)x+根号2=0配方后,是怎么变成『x+ (根号2+1)/2』平方 -(3-2倍根号2)/4 =0?

问题描述:

将方程x平方+(根号2+1)x+根号2=0配方后,是怎么变成『x+ (根号2+1)/2』平方 -(3-2倍根号2)/4 =0?

配方:
x^2+(√2+1)x+√2=0,
x^2+(√2+1)x+[(√2+1)/2]^2+√2-[(√2+1)/2]^2=0,
[x+(√2+1)/2]^2+√2-(3+2√2)/4=0,
[x+(√2+1)/2]^2+(3-2√2)/4=0