f(x)=-√3sin^2x+sinxcosx 求1.单调区间2在X∈[-π/2,0]的最最小值
问题描述:
f(x)=-√3sin^2x+sinxcosx 求1.单调区间2在X∈[-π/2,0]的最最小值
答
原式=-√3(1-cos2x)/2+sin2x/2
=√3/2*cos2x+sin2x/2-√3/2
=sin60°cos2x+sin2xcos60°-√3/2
=sin(2x+π/3)-√3/2
sinx的单调递增区间为[2kπ -π/2,2kπ +π/2]
令2x+π/3∈[2kπ -π/2,2kπ +π/2]得
x∈[kπ -5π/12,kπ+π/12]
sinx的单调递减区间为(2kπ +π/2,2kπ +3π/2)
令2x+π/3∈(2kπ +π/2,2kπ +3π/2)得
x∈(kπ +π/12,kπ+7π/12)
故f(x)单调递增区间为[kπ -5π/12,kπ+π/12]
单调递减区间(kπ +π/12,kπ+7π/12)
(2)根据f(x)单调区间知道,
x∈[-π/2,-5π/12],f(x)单调递减,x∈(-5π/12,0]时候f(x)单调递增
所以f(x)在x=-5π/12时候取最小值
最小值为-1-√3/2
希望我的回答能给你带来帮助!