一道数学题:x+y+z=2,xy+yz+xz=a,xy+x+y=a,已知x,y,z为正实数,求a的取值范围.
问题描述:
一道数学题:x+y+z=2,xy+yz+xz=a,xy+x+y=a,已知x,y,z为正实数,求a的取值范围.
貌似答案是1<a≤四分之五
答
xy+yz+xz=a,xy+x+y=a 由此可得z=1 x+y=1
a=x(1-x)+1=-(x-1/2)^2+5/4
a≤5/4