29.a为任意实数,直线(a-1)x+(a+2)y+5-2a=0恒过定点(m,n)

问题描述:

29.a为任意实数,直线(a-1)x+(a+2)y+5-2a=0恒过定点(m,n)
,证明:mn^4=3

(a-1)x+(a+2)y+5-2a=0
ax-x+ay+2y+5-2a=0
a(x+y-2)=x-2y-5
当x+y-2=0,x-2y-5=0时,不论a为何值时,上式恒等
x+y-2=0
x-2y-5=0
解方程组得:
x=3
y=-1
即直线恒过点(3,-1).所以:m=3,n=-1
mn^4=3*(-1)^4=3