当a为任意实数时,直线(a-1)x+(a+2)y+5-2a=0恒过定点(m,n),求mn^4=?
问题描述:
当a为任意实数时,直线(a-1)x+(a+2)y+5-2a=0恒过定点(m,n),求mn^4=?
答
(a-1)x+(a+2)y+5-2a=0 ax-x+ay+2y+5-2a=0 a(x+y-2)=x-2y-5 当x+y-2=0,x-2y-5=0时,不论a为何值时,上式恒等 x+y-2=0 x-2y-5=0 解方程组得:x=3 y=-1 即直线恒过点(3,-1).所以:m=3,n=-1mn^4=3*(-1)^4=3...