1、如果1/x+1/y=2,求3x+2xy+3y/2x-3xy+2y的值
问题描述:
1、如果1/x+1/y=2,求3x+2xy+3y/2x-3xy+2y的值
2、(1+1/2+1/3+1/4)*(1/2+1/3+1/4+1/5)-(1+1/2+1/3+1/4+1/5)*(1/2+1/3+1/4)
答
1题:1/x+1/y=2
∴(x+y)/xy=2
∴x+y=2xy
∴原式=[3(x+y)+2xy]/[2(x+y)-3xy]
=(8xy)/(xy)=8
2题:原式=、(1+1/2+1/3+1/4)*(1/2+1/3+1/4+1/5)-(1+1/2+1/3+1/4+1/5)*(1+1/2+1/3+1/4)+(1+1/2+1/3+1/4+1/5)
=(1+1/2+1/3+1/4)*[(1/2+1/3+1/4+1/5)-(1+1/2+1/3+1/4+1/5)+(1+1/2+1/3+1/4+1/5)
=-(1+1/2+1/3+1/4)+(1+1/2+1/3+1/4+1/5)
=1/5