函数y=5sin(2x+5π/2)取到最大值时,x的值为

问题描述:

函数y=5sin(2x+5π/2)取到最大值时,x的值为

y=5sin(2x+5π/2)
=5sin(2π+π/2 +2x)
=5sin(2x+π/2)
=5cos[π/2-(2x+π/2)]
=5cos(-2x)
=5cos(2x)
当cos(2x)=1时,y有最大值ymax=5×1=5
此时2x=2kπ,(k∈Z)
x=kπ (k∈Z)