已知tan2α=¾﹙π/2<α<π﹚,求[2cos的平方α/2+sinα-1]/[√2cos﹙α+π/4﹚]

问题描述:

已知tan2α=¾﹙π/2<α<π﹚,求[2cos的平方α/2+sinα-1]/[√2cos﹙α+π/4﹚]

tan2α=3/4
2tanα/(1-tan^2α) = 3/4
8tanα = 3 - 3tan^2α
3tan^2α + 8tanα - 3 = 0
(tanα+3)(3tanα-1) = 0
∵π/2<α<π
∴tanα<0
∴3tanα-1<0
∴tanα+3 = 0
∴tanα = -3
[2cos^2(α/2)+sinα-1]/[√2cos(α+π/4)]
= [(cosα + 1)+sinα-1]/[√2(cosαcosπ/4-sinαsinπ/4)]
= (cosα + sinα)/(cosα - sinα)
= (1+tanα)/(1-tanα)
= (1-3)/(1+3)
= -1/2