x+2/x+3-x+1/x+2=x+8/x+9-x+7/x+8

问题描述:

x+2/x+3-x+1/x+2=x+8/x+9-x+7/x+8

先把分子x+2写成x+3-1也就是说x+2/x+3=1-1/x+3,以此类推,x+1/x+2=1-1/x+2 x+8/x+9=1-1/x+9 x+7/x+8=1-1/x+8 整理得 :1/(x+2)(x+3)=1/(x+8)(x+9) 去分母得 :(x+8)(x+9)=(x+2)(x+3) 解得 x=-11/2

等式变形得:
﹙x+3-1﹚/﹙x+3﹚-﹙x+2-1﹚/﹙x+2﹚=﹙x+9-1﹚/﹙x+9﹚-﹙x+8-1﹚/﹙x+8﹚
∴1-1/﹙x+3﹚-1+1/﹙x+2﹚=1-1/﹙x+9﹚-1+1/﹙x+8﹚
∴1/﹙x+9﹚-1/﹙x+3﹚=1/﹙x+8﹚-1/﹙x+2﹚
∴-6/[﹙x+9﹚﹙x+3﹚]=-6/[﹙x+8﹚﹙x+2﹚]
∴x²+12x+27=x²+10x+16
∴x=-11/2

(x+2)/(x+3)-(x+1)/(x+2)=(x+8)/(x+9)-(x+7)/(x+8)(x+2)²/[(x+2)(x+3)]-(x+1)(x+3)/[(x+2)(x+3)]=(x+8)²/[(x+8)(x+9)]-(x+7)(x+9)/[(x+8)(x+9)][(x+2)²-(x+1)(x+3)]/[(x+2)(x+3)]=[(x+8)²-(x+7)...