已知椭圆方程为四分之X的平方加三分之Y平方等于一,是确定m的取值范围,使得对于直线Y=4X+M,椭圆上有不同
问题描述:
已知椭圆方程为四分之X的平方加三分之Y平方等于一,是确定m的取值范围,使得对于直线Y=4X+M,椭圆上有不同
答
3x²+4y²=12
y=4x+m
所以67x²+32mx+4m²-12=0
有两个不同的交点的判别式大于0
1024m²-1072m²+3216>0
m²-√67