先化简在求值[2x(x^2y-xy^2)+xy(xy-x^2)]÷(x^2y),其中x=2008,y=2007

问题描述:

先化简在求值[2x(x^2y-xy^2)+xy(xy-x^2)]÷(x^2y),其中x=2008,y=2007

[2x(x^2y-xy^2)+xy(xy-x^2)]÷(x^2y)
=[2x^2y(x-y)+x^2y(y-x)]÷(x^2y)
=[(x-y)(2x^2y-x^2y)]÷(x^2y)
=[(x-y)*x^2y]÷(x^2y)
=x-y
=2008-2007
=1

[2x(x^2y-xy^2)+xy(xy-x^2)]÷(x^2y)=[2x*xy(x-y)+xy*x(y-x)]÷(x^2y)=[2x^2*y(x-y)-x^2*y(x-y)]÷(x^2y)=x^2*y(x-y)÷(x^2y)=x-y把x=2008,y=2007代入上式,得[2x(x^2y-xy^2)+xy(xy-x^2)]÷(x^2y)=x-y=2008-2007=...