如图,B、E是正△ACD所在平面外的两点,且AB⊥平面ACD,DE‖AB,AD=DE=2AB,F是CD的中点

问题描述:

如图,B、E是正△ACD所在平面外的两点,且AB⊥平面ACD,DE‖AB,AD=DE=2AB,F是CD的中点
⑴求证:AF‖平面BCE
⑵求平面BCE与平面ACD所成锐二面角的大小

第一问作CE中点G 连接BG,FG所以FG=1/2DE=AB 又因为AB,DE⊥平面ACD∴AF‖BGBG∈平面CBE所以AF‖平面BCE第二问分别延长EB DA交与一点Q连接CQ 则CQ为两平面的交线在平面ACD上过CQ作一点W 使DW⊥CQ 连接EW则 ...