如图,在△ABC中,AB=AC,D为BC中点,DE⊥AB,垂足为E,DF⊥AC,垂足为F,试说明DE=DF的道理(不用全等证).
问题描述:
如图,在△ABC中,AB=AC,D为BC中点,DE⊥AB,垂足为E,DF⊥AC,垂足为F,试说明DE=DF的道理(不用全等证).
答
证明:∵AB=AC,D为BC中点,
∴∠BAD=∠CAD(等腰三角形三线合一),
∵DE⊥AB,DF⊥AC,
∴DE=DF(角平分线上的点到角的两边的距离相等).