设函数f(x)可导,f﹙1﹚=1,且满足lnf﹙x﹚-∫f﹙t﹚dt=0.求f(x)

问题描述:

设函数f(x)可导,f﹙1﹚=1,且满足lnf﹙x﹚-∫f﹙t﹚dt=0.求f(x)

lnf﹙x﹚=∫f﹙t﹚dt
f(x)=[lnf(x)]'=f'(x)/f(x)
df(x)/f^2(x)=dx
-1/f(x)=x+C
f﹙1﹚=1,-1=1+C,C=-2
f(x)=1/(2-x)