已知函数f(x)=Iog4(4^x+1)+kx(k∈R)是偶函数
问题描述:
已知函数f(x)=Iog4(4^x+1)+kx(k∈R)是偶函数
(1)求k的值
(2)求方程f(x)-m=0有解,求m的取值范围
答
(1)因为f(x)是偶函数,则:f(-1)= Iog4(1/4+1)-k=f(1)= Iog4(4+1)+k,
Iog4(5/4)-k= Iog4(5)+k,
2k+ Iog4(5)- Iog4(5/4)=0,
2k+ Iog4(5*4/5)=0,
2k+ Iog4(4)=0,
2k+1=0,
k=-1/2
(2)f(x)-m= Iog4(4^x+1)-1/2*x-m=0,
Iog4(4^x+1)=1/2*x+m,
4^x+1=4^(1/2*x+m),
4^x+1-4^(1/2*x+m)=0,
2^(2x)-2^x*4^m+1=0,
令2^x=y,则方程化为y^2-4^m*y+1=0,
判别式=(4^m)^2-4=4^(2m)-4≥0,
2m≥1,
m≥1/2