求圆内角圆外角圆周角圆边角的个关系以及证明公式
问题描述:
求圆内角圆外角圆周角圆边角的个关系以及证明公式
答
顶点在圆外的角的度数等于所截两弧度数差的一半.顶点在圆内的角的度数等于所截弧度数和的一半
证明:
如图,过C作CE//AB,交圆于E,
则有∠P=∠DCE,弧AC=弧BE(圆中两平行弦所夹弧相等)
而∠DCE的度数等于弧DE的一半,弧DE=弧BD-弧BE=弧BD-弧AC
所以∠DCE的度数等于“弧BD-弧AC”的一半
即“顶点在圆外的角(两边与圆相交)的度数等于其所截两弧度数差的一半”
另外也可以连接BC,则∠P=∠BCD-∠B
∠BCD的度数等于弧BD的度数的一半
∠B的度数等于弧AC的度数的一半
同样得“顶点在圆外的角(两边与圆相交)的度数等于其所截两弧度数差的一半”
圆内角的证明完全类似:
过C作CE//AB,交圆于E,
则有∠APC=∠C,弧AC=弧BE(圆中两平行弦所夹弧相等)
而∠C的度数等于弧DE的一半,弧DE=弧BD+弧BE=弧BD+弧AC
所以∠APC的度数等于“弧BD+弧AC”的一半
即“顶点在圆内的角(两边与圆相交)的度数等于其所截两弧度数和的一半”
另外也可以连接BC进行证明
(圆周角定理是课本上一定有的,“圆边角”没有见过这个说法,是不是指“弦切角”?如果是,课本上也有的
供参考!JSWYC