已知{an}是等差数列,且公差为d,求1/a1a3+1/a2a4+...+1/anan+2
问题描述:
已知{an}是等差数列,且公差为d,求1/a1a3+1/a2a4+...+1/anan+2
答
1/a1a3+1/a2a4+...+1/anan+2=1/2d[1/a1-1/a3+1/a2-1/a4+1/a3-1/a5+1/a4-1/a6+.+1/a(n-2)-1/an+1/a(n-1)-1/a(n+1)+1/an-1/a(n+2)] =1/2d[1/a1+1/a2-1/a(n+1)-1/a(n+2)]能不能不要出现an?那就用a1+(n-1)d表示an,结果更乱了没办法把a1也消去吗?题目没说明,a1是未知数啊没有办法了