在△abc中,若cos^2b-sin^2a=cos^2c,试判断△abc的形状
问题描述:
在△abc中,若cos^2b-sin^2a=cos^2c,试判断△abc的形状
答
△abc的形状为:直角三角形.
cos^2B-sin^2A=cos^2C,
cos^2B-cos^2C=sin^2A,
(cosB+cosC)*(cosB-cosC)=sin^2A,
利用和差化积,得
2*cos[(B+C)/2]*cos[(B-C)/2]*(-2)*sin[(B+C)/2*sin[(B-C)/2]=4*sin^2(A/2)*cos^2(A/2),
而,sin[(B+C)]=cos(A/2),sin[(B+C)/2]=cos(A/2),则有,
-cos[(B-C)/2]*sin[(B-C)/2]=sin(A/2)*cos(A/2),
-sin(B-C)=sinA,
sin(C-B)=sinA,
C-B=A,
C=A+B,A+B+C=180,2C=180,
C=90度.
△abc的形状为:直角三角形.
答
cos^2A=cos^2(B+C)=1-sin^2(B+C) sin(B+C)=sinBcosC+sinCcosB 所以cos^2A+cos^2B+cos^2C=cos^2B+cos^2C-(sin^2Bcos^2C+cos^2Bsin^2C)-2(sinBcosCcosBsinC) +1=1 所以cos^2B+cos^2C-(sin^2Bcos^2C+cos^2Bsin^2C)=2(si...