已知:f(x)=2cos2x+23sinxcosx+a(1)若x∈R,求f(x)的最小正周期和增区间;(2)若f(x)在[-π6,π3]上最大值与最小值之和为3,求a的值.
问题描述:
已知:f(x)=2cos2x+2
sinxcosx+a
3
(1)若x∈R,求f(x)的最小正周期和增区间;
(2)若f(x)在[-
,π 6
]上最大值与最小值之和为3,求a的值. π 3
答
(1)f(x)=2cos2x+23sinxcosx+a=1+cos2x+3sin2x+a=2sin(2x+π6)+a+1,∴T=2π2=π,由2kπ-π2≤2x+π6≤2kπ+π2,得kπ-π3x≤π6+kπ,k∈Z,∴函数f(x)的增区间为[kπ-π3,kπ+π6](k∈Z);(2)∵x∈[...
答案解析:(1)利用二倍角公式和两角和公式对函数解析式化简,利用周期公式求得函数的最小正周期,利用正弦函数的性质求得函数的单调增区间.
(2)根据x的范围确定2x+
的范围,进而确定sin(2x+π 6
)的范围,则函数的最大和最小值的表达式可得,最后相加即可求得a.π 6
考试点:二倍角的正弦;两角和与差的正弦函数;二倍角的余弦;三角函数的周期性及其求法.
知识点:本题主要考查了二倍角公式和两角和公式的应用,三角函数图象与性质.考查了学生基础知识的掌握和一定的运算能力.