如图①,已知抛物线y=ax*2+bx+3(a≠0)与x轴交于点A(1,0)和点B(-3,0),与y轴交于点C.
问题描述:
如图①,已知抛物线y=ax*2+bx+3(a≠0)与x轴交于点A(1,0)和点B(-3,0),与y轴交于点C.
设抛物线的对称轴与x轴交于点M,问在对称轴上是否存在点P,使△CMP为等腰三角形,存在,写出P坐标,不存在,理由
答
这个题目简单
1:对称轴的位置就是A和B两点中间为位置,表达式为x=-1,M(-1,0)
2:把x=0代入式子得出:y=3,则C坐标为(0,3)
3:把点A和点B坐标代入式子得出
a+b+3=0
9a-3b+3=0
解得a=-1,b=-2
y=-x^2-2x+3
4:两种
A:点P关于x轴对称,坐标为(-1,-3),CM=PM
B:以点C为圆心,CM为半径做圆,与对称轴的交点就是点P,CM=PC
CM长度为√10,所以点P坐标为(-1,3+√10)和(-1,3-√10)