已知点A(2,-1)B(-1,3)C(-2,-5)①求向量AB+向量AC的坐标②求向量AB-向量AC的坐标③求向量AB*向量AC④∠BAC的大小

问题描述:

已知点A(2,-1)B(-1,3)C(-2,-5)①求向量AB+向量AC的坐标②求向量AB-向量AC的坐标③求向量AB*向量AC④∠BAC的大小

1
AB=(-1,3)-(2,-1)=(-3,4),AC=(-2,-5)-(2,-1)=(-4,-4)
AB+AC=(-3,4)+(-4,-4)=(-7,0)
2
AB-AC=(-3,4)-(-4,-4)=(1,8)
3
AB·AC=(-3,4)·(-4,-4)=12-16=-4
4
AB·AC=|AB|*|AC|*cos(∠BAC)=5*4sqrt(2)*cos(∠BAC)
故:cos(∠BAC)=AB·AC/(20sqrt(2))=-4/(20sqrt(2))=-sqrt(2)/10
即:∠BAC=π-arccos(sqrt(2)/10)