已知tanA=17/7,tanB=2/3,且A,B都是锐角,求A+2B
问题描述:
已知tanA=17/7,tanB=2/3,且A,B都是锐角,求A+2B
答
tan(A+2B)=(tanA+tan2B)/(1-tanAtan2B).tan2B=2tanB/(1-tan^2B)=(2*2/3)/[1-(2/3)^2]=(4/3)/(5/9).=12/5.tan(A+2B)=[(17/7)+(12/5)]/[1-(17/7)*12/5].=169/(-169)∴tan(A+2B)=-1.