与直线x+y-2=0和曲线x^2+y^2-12x-12y+64=0都相切的半径最小的圆的标准方程是
问题描述:
与直线x+y-2=0和曲线x^2+y^2-12x-12y+64=0都相切的半径最小的圆的标准方程是
答
过此圆圆心(6,6)作已知直线的垂线,垂足为A(1,1);垂线与圆交点为B(4,4),AB长为所求圆的直径(=3√2),圆心在AB中点(2.5,2.5)
∴所求圆的标准方程为 (x-2.5)²+(y-2.5)²=4.5
(总结:一般涉及到圆与直线的关系时,辅助线通常是垂直与相切)