如图,三角形ABC的面积是60,BE:CE=1:2,AD:CD=3:1,求四边形ECDF的面积
问题描述:
如图,三角形ABC的面积是60,BE:CE=1:2,AD:CD=3:1,求四边形ECDF的面积
答
四边形ECDF的面积等于13
过点D做AE的平行线DG,交BC于点G
∵AD:DC=3:1 且S△ABC=60 ; CE:BE=2:1 且S△ABC=60
∴S△CDB=15 ; S△CAE=40
在△CAE中 ∵DG//AE 且AD:DC=3:1
∴DG:AE=1:4 ; CG:GE=1:3
∴S△CDG:S△CAE=(DG:AE)²=(1:4)²=1:16 ; GE=(3/4)CE
∴S△CDG=5/2
在△CDB中 ∵S△CDG=5/2 且S△CDB=15
∴S△DGB=15-(5/2)=25/2
∵GE=(3/4)CE 且CE:BE=2:1
∴GE:BE=3:2 即BE:GE=2:3 即BE:BG=2:5
在△DGB中 ∵FE//DG 且BE:BG=2:5
∴S△BFE:S△DGB=(BE:BG)²=(2:5)²=4:25 而S△DGB=25/2
∴S△BFE=2
S四边形DFEG=S△DGB-S△BFE=(25/2)-2=21/2
S四边形ECDF=S四边形DFEG+S△CDG=(21/2)+(5/2)=13