求证:对任何整数x(1),x(2),…x(14)都不能满足x(1)^4+x(2)^4+…x(14)^4=1999
问题描述:
求证:对任何整数x(1),x(2),…x(14)都不能满足x(1)^4+x(2)^4+…x(14)^4=1999
最后式子应该是
x(1)^4+x(2)^4+…+x(14)^4=1999
漏了一个加号
答
4次方
0 0
1 1
2 16
3 81
4 256
5 625
6 1296
穷举是个好办法