y''+y=x求通解
问题描述:
y''+y=x求通解
答
D是微分算子
i是虚数单位
(1+D^2)f(x)=x
(1+iD)(1-iD)f(x)=x
1/(1-t)=1+t+t^2+t^3+t^4+t^5+.
1/(1-iD)=1+iD-D^2-iD^3+D^4+iD^5.
1/(1+iD)=1-iD-D^2+iD^3+D^4-iD^5.
D(x)=1
D^2(x)=0
D^3(x)=0
f(x)=(1+iD-D^2-iD^3+D^4+iD^5.)(1-iD-D^2+iD^3+D^4-iD^5.)x
=(1)x
特解是
f(x)=x
sin(x+a)''=cos(x+a)'=-sin(x+a)
通解是f(x)=x+C*sin(x+a)