为什么(S/2V1+S/2V2 )-2S/(V1+V2)>0 S>V1>V2>0

问题描述:

为什么(S/2V1+S/2V2 )-2S/(V1+V2)>0 S>V1>V2>0

S/(2V₁)+S/(2V₂)>2S/(V₁+V₂)
两边同时乘以2V₁V₂(V₁+V₂)
SV₂(V₁+V₂)+SV₁(V₁+V₂)>4SV₁V₂
S(V₁+V₂)²>4SV₁V₂
S[(V₁+V₂)²-4V₁V₂]>0
S(V₁²-2V₁V₂+V₂²)>0
S(V₁-V₂)²>0
因为V₁>V₂>0
所以最后一式显然成立
而上面的过程每一步都是可逆的
故S/(2V₁)+S/(2V₂)>2S/(V₁+V₂)成立
即S/(2V₁)+S/(2V₂)-2S/(V₁+V₂)>0

上式可化简为
s*(v1+v2)/2v1*v2-2s/(v1+v2)
=s*(v1+v2)*(v1+v2)/(2v1*v2*(v1+v2))-4sv1*v2/(2v1*v2*(v1+v2))
=(v1-v2)*(v1-v2)*s/(2v1*v2*(v1+v2))
v1/=v2
得证