a=(cos3/2x,sin3/2x) b=(cosx/2,-sinx/2) c=(1,-1),x[-π/2,π/2]

问题描述:

a=(cos3/2x,sin3/2x) b=(cosx/2,-sinx/2) c=(1,-1),x[-π/2,π/2]
1 证 (a+b)⊥(a-b)
2 fx=( (a+c)^2-3) ((b-c)^2-3) 的最值
a,b,c是向量

(1)、a+b=(cos3x/2+cosx/2,sin3x/2-sinx/2),a-b=(cos3x/2-cosx/2,sin3x/2+sinx/2),(cos3x/2+cosx/2)*(cos3x/2-cosx/2)+(sin3x/2-sinx/2)(sin3x/2+sinx/2)=cos^2(3x/2)-cos^2(x/2)+sin^2(3x/2)-sin^2(x/2)=1-1=0,—...(a+c)^2-3=2(sin3x/2+cos3x/2)=2√2sin(3x/2+π/4),

和b-c)^2-3=-2(cosx/2+sinx/2)=-2√2sin(x/2+π/4),

和4[cos(2x+π/2)-cosx]
=4sin^3x-4sinx,

怎么得三角函数积化和差:
2sinasinb=cos(a-b)-cos(a+b)。