已知函数f(x)=a3x3−a+12x2+x+b,其中a,b∈R.(Ⅰ)若曲线y=f(x)在点P(2,f(2))处的切线方程为y=5x-4,求函数f(x)的解析式;(Ⅱ)当a>0时,讨论函数f(x)的单调性.

问题描述:

已知函数f(x)=

a
3
x3
a+1
2
x2+x+b,其中a,b∈R.
(Ⅰ)若曲线y=f(x)在点P(2,f(2))处的切线方程为y=5x-4,求函数f(x)的解析式;
(Ⅱ)当a>0时,讨论函数f(x)的单调性.

(Ⅰ)f'(x)=ax2-(a+1)x+1,
由导数的几何意义得f'(2)=5,于是a=3.
由切点P(2,f(2))在直线y=5x-4上可知2+b=6,解得b=4.
所以函数f(x)的解析式为f(x)=x3-2x2+x+4.
(Ⅱ)f′(x)=ax2−(a+1)x+1=a(x−

1
a
)(x−1),
当0<a<1时,
1
a
>1
,函数f(x)在区间(-∞,1)及(
1
a
,+∞)
上为增函数;
在区间(1,
1
a
)
上为减函数;
当a=1时,
1
a
=1
,函数f(x)在区间(-∞,+∞)上为增函数;
当a>1时,
1
a
<1
,函数f(x)在区间( ∞,
1
a
)
及(1,+∞)上为增函数;
在区间(
1
a
,1)
上为减函数.
答案解析:(1)先求函数f(x)的导数,令f'(2)=5求出a的值,切点P(2,f(2))在函数f(x)和直线y=5x-4上,可求出b的值,最后得到答案.
(2)对f'(x)的解析式因式分解后讨论可得答案.
考试点:利用导数研究函数的单调性.
知识点:本题主要考查函数的单调性与其导函数的正负之间的关系,即当导函数大于0时原函数单调递增,当导函数小于0时原函数单调递减.