已知函数f(x)=f(π-x),且当x∈(-π/2,π/2)时,f(x)=x+sinx,设a=f(1),b=f(2),c=f(3),则a、b、c的大小关系是__________.
问题描述:
已知函数f(x)=f(π-x),且当x∈(-π/2,π/2)时,f(x)=x+sinx,设a=f(1),b=f(2),c=f(3),则a、b、c的大小关系是__________.
答
已知函数f(x)=f(π-x),且当x∈(-π/2,π/2)时,f(x)=x+sinx,设a=f(1),b=f(2),c=f(3),则a、b、c的大小关系是__________.
根据题意有
b =f(2) = f(π-2) =(π-2)+ sin(π-2) (因为2不在x的范围内)
c =f(3) = f(π-3) = (π-3) + sin(π-3) (理由同上)
而a =f(1) = 1+sin1
当x∈(-π/2,π/2)时,f(x)单调递增
(π-2)> 1 > (π-3)
∴f(π-2) > f(1) > f(π-3)
∴b > a > cf(1)为什么不是f(π-1)?因为 π-1 不在 x∈(-π/2,π/2) 的范围内啊。之前2和3不在x∈(-π/2,π/2) 的范围内,所以要用f(x)=f(π-x),可以求出它们的值。