在四边形ABCD中,BC=CD=8,AB=16,AB⊥BC,CD⊥BC,求把四边形ABCD绕AB旋转一周所得几何体的面积

问题描述:

在四边形ABCD中,BC=CD=8,AB=16,AB⊥BC,CD⊥BC,求把四边形ABCD绕AB旋转一周所得几何体的面积

由题意,
在四边形ABCD中,
AB⊥BC,
CD⊥BC,
AB ‖ CD,
AB = 16,
CD = 8,
您如果过D作DF⊥AB 于F,
在Rt△ADF 中,
由勾股定理易求得AD=8√2.
∴把四边形ABCD绕AB旋转一周所得几何体为:
上面是一个底面半径为R=BC=8、母线长为L=AD=8√2 的圆锥;
下面是一个底面半径为R=BC=8、高为h=CD=8 的圆柱.
该几何体的面积为 以下三部分的和:
圆锥的侧面积+圆柱的侧面积+ 圆柱的底面积.
先求(上面)圆锥的侧面积:
圆锥的侧面积等于圆锥底面半径R与 圆锥母线L乘积的π 倍.
∴圆锥的侧面积S1 = πRL= 8 × 8√2 × π = 64√2 π
再求(下面)圆柱的侧面积 :
圆柱的侧面积等于 圆柱的底面周长 ×圆柱的高.
∴圆柱的侧面积S2 = 2πR ×h
= 2 × π × 8 × 8
= 128π
再求圆柱的底面积:圆柱的底面是 半径为R=8 的圆,
∴圆柱的底面积S3 = π×R×R=64π
∴把四边形ABCD绕AB旋转一周所得几何体的面积为:
S = S1+S2+S3
= 64√2 π +128π +64π
= (64√2+192) π
祝您学习顺利!