在正方形ABCD-A1B1C1D1中,P是侧面B1B1CC内一动点,若P到直线BC与C1D1的距离相等,则动点P的轨迹是?为什么是抛物线?

问题描述:

在正方形ABCD-A1B1C1D1中,P是侧面B1B1CC内一动点,若P到直线BC与C1D1的距离相等,则动点P的轨迹是?
为什么是抛物线?

分析:由线C1D1垂直平面BB1C1C,分析出|PC1|就是点P到直线C1D1的距离,则动点P满足抛物线定义,问题解决.
由题意知,直线C1D1⊥平面BB1C1C,则C1D1⊥PC1,即|PC1|就是点P到直线C1D1的距离,
那么点P到直线BC的距离等于它到点C的距离,所以点P的轨迹是抛物线.