若方程2(k2-2)x2+k2y2+k2-k-6=0表示椭圆,则k的取值范围是( ) A.(−∞,−2)∪(2,+∞) B.(−2,−2)∪(2,3) C.(-2,3 ) D.(−2,−2)∪(2,2)∪(2,3)
问题描述:
若方程2(k2-2)x2+k2y2+k2-k-6=0表示椭圆,则k的取值范围是( )
A. (−∞,−
)∪(
2
,+∞)
2
B. (−2,−
)∪(
2
,3)
2
C. (-2,3 )
D. (−2,−
)∪(
2
,2)∪(2,3)
2
答
方程2(k2-2)x2+k2y2+k2-k-6=0化为x26+k−k22(k2−2)+y26+k−k2k2=1.∵方程2(k2-2)x2+k2y2+k2-k-6=0表示椭圆,∴6+k−k22(k2−2)>06+k−k22(k2−2)≠6+k−k2k26+k−k2k2>0,解得-2<k<−2,且2<k<3,且k≠2...