一次函数y=(m2-4)x+(1-m)和y=(m+2)x+(m2-3)的图象分别与y轴交于点P和Q,这两点关于x轴对称,则m的值是_.

问题描述:

一次函数y=(m2-4)x+(1-m)和y=(m+2)x+(m2-3)的图象分别与y轴交于点P和Q,这两点关于x轴对称,则m的值是______.

∵一次函数y=(m2-4)x+(1-m)和y=(m+2)x+(m2-3)的图象分别与y轴交于点P和Q,
∴由两函数解析式可得出:P(0,1-m),Q(0,m2-3),
又∵P点和Q点关于x轴对称,
∴可得:1-m=-(m2-3),
解得:m=2或m=-1.
∵y=(m2-4)x+(1-m)是一次函数,
∴m2-4≠0,
∴m≠±2,
∴m=-1.
故答案为:-1.