设p:f(x)=e^x+Inx+2x^2+mx+1在(0,+∞)内单调递增,q:m≥5,则p是q的()

问题描述:

设p:f(x)=e^x+Inx+2x^2+mx+1在(0,+∞)内单调递增,q:m≥5,则p是q的()
设p:f(x)=e^x+Inx+2x^2+mx+1在(0,+∞)内单调递增,q:m≥-5,则p是q的()
答案是必要不充分条件
我的想法是先求导得f'(x)=e^x+1/x+4x+m
然后题目说单调递增所以f'(x)≥0
即m≥-(1/x+4x)-e^x
然后1/x+4x用均值不等式≥4
e^x>0
所以m>-5
那么p等价于m>-5 q为m≥-5
所以说应该是p推出q q推不出p啊
所以是充分不必要条件啊
我不懂哪里错了 不要复制 我都看不懂

有一个地方你逻辑错了,假设1/x+4x+e^x=n,呢么有n>5,你能从m≥-n得出m>-5么?(比如n=10,m=-8呢)?正确的应该为:p等价于m大于等于-(1/x+4x)-e^x的最大值,这个最大值不是无限接近-5,1/x+4x≥4,取等号时x=2,e^x≥1(这...