数列{an}是等差数列,且an=an^2+n,则实数a=2.公差为d的等差数列中,a6+a10=18,则a1+7d=
问题描述:
数列{an}是等差数列,且an=an^2+n,则实数a=
2.公差为d的等差数列中,a6+a10=18,则a1+7d=
答
第一道有点没看懂,那个实数a在哪 是不是n^2前面那个如果是的话 那貌似如下.An=a *n^2+nA1=a+1A2=a*4+2A3=a*9+3A2-A1=A3-A2=d4a+2-a-1=9a+3-4a-23a+1=5a+1 a=02》a6+2d=a8a8+2d=a10a6+a10=a8-2d+a8+2d=2a8=18a8=9a1+7...