1)微分方程y'=xy的通解?

问题描述:

1)微分方程y'=xy的通解?
2)y'=2y 满足初始条件y'(0)=2
3)lim n趋向于无穷 (n^2/1-n)sin(1/n)=?

1)∵y'=xy ==>dy/dx=xy
==>dy/y=xdx
==>ln│y│=x²/2+ln│C│(C是积分常数)
==>y=Ce^(x²/2)
∴原方程的通解是y=Ce^(x²/2)(C是积分常数);
2)∵y'=2y ==>dy/dx=2y
==>dy/y=2dx
==>ln│y│=2x+ln│C│ (C是积分常数)
==>y=Ce^(2x)
∴原方程的通解是y=Ce^(2x)(C是积分常数)
==>y'=2Ce^(2x)
∵y'(0)=2 ==>2C=2
==>C=1
∴y'=2y 满足初始条件y'(0)=2 的特解是y=e^(2x);
3)原式=lim(n->∞){[n/(1-n)]*[sin(1/n)/(1/n)]}
={lim(n->∞)[n/(1-n)]}*{lim(n->∞)[sin(1/n)/(1/n)]}
={lim(n->∞)[1/(1/n-1)]}*{lim(n->∞)[sin(1/n)/(1/n)]}
=[1/(0-1)]*1(应用重要极限lim(x->0)(sinx/x)=1)
=-1.