如图,AB是⊙O的直径,C为⊙O上一点,AD⊥CD,(点D在⊙O外)AC平分∠BAD. (1)求证:CD是⊙O的切线; (2)若DC、AB的延长线相交于点E,且DE=12,AD=9,求BE的长.
问题描述:
如图,AB是⊙O的直径,C为⊙O上一点,AD⊥CD,(点D在⊙O外)AC平分∠BAD.
(1)求证:CD是⊙O的切线;
(2)若DC、AB的延长线相交于点E,且DE=12,AD=9,求BE的长.
答
(1)证明:连接OC,∵AC平分∠DAB,∴∠DAC=∠CAB,∵OC=OA,∴∠OAC=∠OCA,∴∠DAC=∠OCA,∴OC∥AD,∵AD⊥CD,∴OC⊥CD,∵OC为⊙O半径,∴CD是⊙O的切线.(2)在Rt△ADE中,由勾股定理得:AE=92+122=15,∵OC...