已知(2a)^x=a,log3a2a=y(3a为底数,2a为真数),求证:2^(1-xy)=3^(y-xy).
问题描述:
已知(2a)^x=a,log3a2a=y(3a为底数,2a为真数),求证:2^(1-xy)=3^(y-xy).
答
这题有点麻烦,考你等量带换首先根据(2a)^x=a,log3a2a=y得到2^x=a^(1-x),3^y=2*a^(1-y)2^(1-xy) / 3^(y-xy)=[2/2^(xy)]/[3^(y(1-y))]={2/a^[(1-x)y}/[2*a^(1-y)]^(1-x)=2/{a^(y-xy)*[2*a^(1-y)]^((1-x)=2^x/a^(1-x)=2...