数列{an}是首项为23,公差为整数的等差数列,且第六项为正,第七项为负.(1)求数列的公差;(2)求前n项和Sn的最大值;(3)当Sn>0时,求n的最大值.
问题描述:
数列{an}是首项为23,公差为整数的等差数列,且第六项为正,第七项为负.
(1)求数列的公差;
(2)求前n项和Sn的最大值;
(3)当Sn>0时,求n的最大值.
答
(1)由已知a6=a1+5d=23+5d>0,a7=a1+6d=23+6d<0,解得:-235<d<-236,又d∈Z,∴d=-4(2)∵d<0,∴{an}是递减数列,又a6>0,a7<0∴当n=6时,Sn取得最大值,S6=6×23+6×52(-4)=78(3)Sn=23n+n(n−1)2(-...
答案解析:(1)利用等差数列的通项公式列出a6>0,a7<0,求出d的值;
(2)根据d<0判断{an}是递减数列,再由a6>0,a7<0,得出n=6时,Sn取得最大值;
(3)由等差数列的前n项和公式列出不等式,解不等式即可.
考试点:等差数列的性质;数列的函数特性.
知识点:本题考查了等差数列的性质、通项公式以及前n项和公式,(2)问d<0判断{an}是递减数列,是解题的关键,属于中档题.