求曲线x=e∧tcost y=e∧tsint z=3t 对应t=4/π的切线
问题描述:
求曲线x=e∧tcost y=e∧tsint z=3t 对应t=4/π的切线
答
求曲线x=(e^t)cost,y=(e^t)sint,z=3t 对应t=π/4的切线
t=π/4时,xℴ=(√2/2)e^(π/4),yℴ=(√2/2)e^(π/4),zℴ=(3/4)π
dx/dt=(e^t)(cost-sint),x′(π/4)=xℴ′=0;
dy/dt=(e^t)(sint+cost),y′(π/4)=yℴ′=(√2)e^(π/4);
dz/dt=3,z′(π/4)=zℴ′=3.
故t=π/4处的切线方程为:[x-(√2/2)e^(π/4)]/0=[y-(√2/2)e^(π/4)]/(√2)e^(π/4)=[z-(3/4)π]/3