求证:cos2αcos2β=1/2{cos2(α+β)+cos2(α-β)}
问题描述:
求证:cos2αcos2β=1/2{cos2(α+β)+cos2(α-β)}
答
用a和b
左边=cos[(a+b)+(a-b)]cos[(a+b)-(a-b)]
=[cos(a+b)cos(a-b)-sin(a+b)sin(a-b)][cos(a+b)cos(a-b)+sin(a+b)sin(a-b)]
=cos²(a+b)cos²(a-b)-sin²(a+b)sin²(a-b)
=[1+cos2(a+b)]/2[1+cos2(a-b)]/2-[1-cos2(a+b)]/2[1-cos2(a-b)]/2
=[1+cos2(a+b)+cos2(a-b)+cos2(a+b)]/4-[1-cos2(a+b)-cos2(a-b)+cos2(a+b)]/4
=[cos2(a+b)+cos2(a-b)]/2=右边
命题得证