若w=-2/(1+根号3i),则1+w+w^2等于

问题描述:

若w=-2/(1+根号3i),则1+w+w^2等于

w=-2/(1+根号3i)=-2(1-根号3i)/[(1+根号3i)(1-根号3i)]=-2(1-根号3i)/[1²-(根号3i)²]=-2(1-根号3i)/[1-(-3)]=-2(1-根号3i)/[1+3]=-2(1-根号3i)/4=-(1-根号3i)/2=(根号3i-1)/2w^2=(根号3i-1)²/4=[(根...