(x^5)+(x^4)+1将这个式子因式分解

问题描述:

(x^5)+(x^4)+1
将这个式子因式分解

(*^9)+1

x^5+x^4+1=x^5+x^4+x^3-x^3+1=X^3(X^2+X+1)-(X-1)(X^2+X+1)=(X^2+X+1)(X^3-X+1)

(x^5)+(x^4)+1
=(x^5)+(x^4)+x^3-x^3+1
=x^3(x^2+x+1)+(1-x)(x^2+x+1)
=(x^2+x+1)(x^3-x+1)

(x^5)+(x^4)+1
=(x^5)+(x^4)+x^3-x^3+1
=x^3(x^2+x+1)+(1-x)(x^2+x+1)
=(x^2+x+1)(x^3-x+1)