已知函数y=f(x)=(ax^2+1)/(bx+c) (a、b、c∈R,且a>0,b>0)是奇函数,当x>0时,f(x)有最小值2,已知函数y=f(x)=(ax^2+1)/(bx+c) (a、b、c∈R,且a>0,b>0)是奇函数,当x>0时,f(x)有最小值2,其中b∈N且f(1)
问题描述:
已知函数y=f(x)=(ax^2+1)/(bx+c) (a、b、c∈R,且a>0,b>0)是奇函数,当x>0时,f(x)有最小值2,
已知函数y=f(x)=(ax^2+1)/(bx+c) (a、b、c∈R,且a>0,b>0)是奇函数,
当x>0时,f(x)有最小值2,其中b∈N且f(1)
答
bucunzai
答
是奇函数
则f(-x)=(ax²+1)/(-bx+c)=-f(x)=-(ax²+1)/(bx+c)
解得c=0
所以f(x)=ax/b+1/(bx)
当x>0,a>0,b>0时
f(x)≥2√(ax/b*1/bx)=2√(a/b²)
即f(x)最小=2√(a/b²)=2
所以a=b² (1)
由已知f(1)=a/b+1/b=(a+1)/b